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Euclidean TSP is NP-hard [Papadimitriou 1977]. We need to settle for approximation
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PTAS for Euclidean TSP: for any fixed ε > 0 find a tour that is at most (1 + ε)
times longer than optimal in nO(1) time.

History of PTASes for Euclidean TSP:

Arora (J.ACM 1998) n(log(n)/ε)O(1/ε) time

Mitchell (SICOMP 1999) nO(1/ε) time
2010 Gödel prize
winners!

Rao and Smith (STOC 1998)
(1/ε)O(1/ε)n log n time

Bartal and Gottlieb (FOCS 2013) 2(1/ε)O(1)
n

time

Complicated
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Algorithm:
1. Add randomly shifted quadtree

2. Add g equispaced portals for each cell
3. Find min. length portal respecting tour with DP

Structure Theorem There is a portal respecting tour of
expected tour length ≤ (1 + ε)OPT

Dynamic Programming For each cell find shortest path
cover for a given matching on portals

Total runtime: nO(1) · 2O(g) = nO(1/ε)
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Main point: If tour uses < 1/ε portals, then increase the
granularity g

Our idea For every cell pick k ≤ 1/ε portals from the set of
g := 1

ε2k
equally spaced portals

In the Dynamic Programming consider states where k
portals from g(k) equally spaced portals are used (for every
k ∈ {2, . . . , ε−1}).

Runtime:
(g(k)

k

)
n logn ≤ 2O(1/ε)n logn

Proof that this scheme works: Highly technical, check our
paper
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